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Abstract: The earth is currently dealing with a variety of issues and is losing its potential as a result of climate change 

brought on by increasing industrialization and urbanization. Harmful metals wastes generated by anthropogenic processes such 

as household, municipal, agricultural, industrial, and military operations penetrate the soil, decreasing its quality and 

usefulness. Because soil is the foundation of life, it necessitates excellent remediation activity. The problem of soil pollution is 

no longer being ignored because it is limited or no new land to replace. Therefore, the objective of this review paper is to 

explore the concepts and promises of basic phytoremediation approaches for heavy metal-contaminated soils. The use of living 

organisms, particularly plants (phytoremediation), is one of the remediation approaches that is now being used. In comparison 

to other soil remediation approaches, phytoremediation is an effective and affordable technology that can work with few 

maintenance costs once established, is suited for vast regions with low to moderate amounts of contaminants, and is 

ecologically benign. Phytoremediation, on the other hand, is a long-term remediation option, and not all of its remediation 

procedures are optimal. For example, in the case of phytovolatilization, air pollution may occur, while in the case of 

phytoextraction, pollutants collected in leaves may be released back into the environment during litterfall. Therefore, future 

concerns should be directed toward the modification and improvement of phytoremediation technologies that are likely to 

improve metal-binding abilities in plant tissues and phyto-transform toxic metals. Finally, it is critical to minimize or avoid the 

release of harmful compounds into the environment, in addition to enhancing and adapting various techniques. 
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1. Introduction 

Heavy metals are conventionally known as natural elements 

with metallic properties (ductility, conductivity, stability as 

cations, ligand specificity, etc), higher atomic weights, and a 

density five times greater than that of water [60, 115]. The 

most common and important heavy metals are As, Sr, Cs, U, 

Cd, Cr, Cu, Hg, Pb, and Zn [63, 96]. Some of these metals 

such as Zn, Cu, Mn, Ni, and Co are micronutrients necessary 

for plant growth and development while others (Cd, Pb, and 

Hg) have unknown biological functions [42]. As stated by 

Jayanthi et al. [56]; Shazia et al. [106], heavy metals are not 

only cytotoxic but also carcinogenic and mutagenic in nature 

even when present at trace amount [56, 106]. For instance, the 

U.S Environmental Protection Agency and International 

Agency for Research on Cancer declared certain heavy metals 

like Pb, Cd, Hg, As and Cr as the most toxic of all pollutants 

and termed them carcinogens due to their potential problems to 

human health [115]. 

Electronics, automotive, ceramics, glass, paints, pigments, 

fertilizers, reagents, alloys for diverse uses, and so on are 

examples of heavy metal resources attributed to the 

fundamental acquired usefulness that are produced directly or 

indirectly from heavy metals. As a result, human 
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socioeconomic progression is becoming increasingly reliant 

on the use of various heavy metals, necessitating the 

extraction of enormous quantities of these resources as 

industrialization and urbanization progress [73]. However, 

most human activities emit non-recovered heavy metal-

containing pollutants into the soil on a daily basis [78]. As a 

result, their negative consequences on human health and the 

environment are rapidly expanding [31] athering of minerals, 

erosions, and volcanic activity are the most significant 

natural sources, while mining, smelting, electroplating, 

excessive use of pesticides, fertilizer discharge, biosolids 

(livestock manures, composts, and municipal sewage sludge), 

atmospheric deposition, and other anthropogenic sources are 

also significant [38, 99]. To be sure, heavy metal pollution 

and its effects on environmental quality and human health are 

well-known global issues [20, 105]. 

Table 1. Potential sources of heavy metals. 

Heavy Metal Sources References 

Arsenic* 
Mining, smelting, pesticides, bio-solids, wood preservatives, petroleum refining, food additives, coal-based power plants, 

volcanic eruptions. 
[31, 37] 

Mercury* Volcanic activities, waste from caustic soda industry, Gold-Silver mining, medical waste, peat, burning of wood and coal. [31, 36] 

Lead* Petroleum derivatives, mining, paints, smelting, industrial and municipal sewage, pesticides, wastes from batteries, [31, 73] 

Cadmium* Smelting, sludge, combustion of fossil fuels, phosphate fertilizers, paint, pigments, plastic stabilizers, electroplating. [31, 36] 

Chromium* Electroplating, sludge, solid wastes, fly ash, tanning, textile, steel and pulp processing industries. [31, 73] 

Copper** Copper polishing, mining, paint, plating, printing operations [31, 36] 

Nickel** Electroplating, non-ferrous metal, paints, porcelain enameling [36, 23] 

Selenium** Coal combustion, mining [31] 

Silver** Battery manufacture, mining, photographic processing, smelting [85, 84] 

Source: Ayansina and Olubukola, [10] **; Mukhtar et al. [79] * 

Several strategies for cleaning up the environment from 

these types of toxins are already in use, but the majority of 

them are expensive and fall short of their potential. 

Chemical procedures produce significant volumes of 

sludge, which raises expenses [87]; chemical and thermal 

processes are technically challenging and costly, and they 

can destroy soils' valuable components [50]. Traditionally, 

heavy metal contaminated soils have been remedied by 

either onsite management or excavation and subsequent 

disposal to a landfill. This type of disposal only relocates 

the contamination problem, as well as the risks associated 

with transporting polluted soil and contaminant migration 

from the landfill into the surrounding ecosystem. Soil 

washing is an alternative to excavation and landfill disposal 

for clearing polluted soil. However, this process is 

expensive and produces a heavy metal-rich residue that will 

require further treatment. Furthermore, because these 

physio-chemical procedures for soil remediation remove all 

biological activity, they render land unusable as a substrate 

for plant growth [42]. 

Concerns about environmental pollution have prompted 

the development of devices to determine the presence and 

mobility of metals in soil [108]. Phytoremediation is now an 

effective and cost-effective technological technique for 

removing metal contaminants from polluted soil. Because the 

expenses of cultivating a crop are low compared to the costs 

of soil removal and replacement, plant-based remediation 

solutions can operate with little upkeep once established. 

Phytoremediation is ten times cheaper than engineering-

based remediation technologies such soil excavation, soil 

washing or burning, or pump-and-treat systems because 

biological processes are ultimately solar-driven [41]. 

The fact that phytoremediation is done in situ adds to the 

cost-effectiveness of the process and may limit the amount of 

polluted substrate that is exposed to humans, wildlife, and the 

environment [82]. It is not, however, always the greatest 

answer to a contamination issue. The application of 

phytoremediation is limited by the meteorological and 

geological characteristics of the cleaning site, such as 

temperature, altitude, soil type, and agricultural equipment 

accessibility [100]. Furthermore, soil factors such as pH, 

organic matter, and clay concentration influence heavy metal 

bioavailability [8]. The use of a phytoremediation strategy 

may cause some issues. Woods that accumulate 

contaminants, for example, might be utilized as fuel, while 

pollutants gathered in leaves can be released back into the 

ecosystem during litterfall [100]. Many of the limits of 

phytoremediation can be summarized as follows: pollutants 

must be accessible to a plant and its root systems [82]. 

The problem of soil pollution is no longer being ignored 

because it is limited or no new land to replace. Furthermore, 

it is self-evident that the "used up" soil resource must be 

refined in an environmentally responsible and cost-effective 

manner in order to sustain life on Earth. Therefore, the major 

objective of this review paper is to explore the concepts and 

promises of basic phytoremediation approaches for heavy 

metal-contaminated soils. 

2. Phytoremediation of Soils Polluted 

with Heavy Metals 

2.1. An Overview of Phytoremediation Technology 

Phytoremediation is a newly evolving field of science 

and technology that uses plants and their associated 

rhizospheric microorganisms to extract, sequester, and/or 

detoxify a wide variety of environmental contaminants [72]. 

A set of ecological techniques that employ plants in situ to 

promote pollutant breakdown, immobilization, and removal 

from the environment. It is a green technology that is 
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frequently the most cost-effective treatment for metal-

polluted soils, especially in cases of widespread pollution 

[27]. Because many cropping cycles may take several years 

to decrease metals to acceptable regulatory levels, 

phytoremediation should be seen as a long-term 

remediation strategy. 

Plants have a unique ability to concentrate elements and 

compounds from the soil and metabolize the molecules in 

their tissues, which is used in phytoremediation [45]. Plant 

roots can play a key role in metal removal via filtration, 

adsorption, and cation exchange, as well as plant-induced 

chemical changes in the rhizosphere, because the majority of 

plant roots are located in the soil [32, 129]. Physiological 

adaptations also regulate hazardous metal accumulations in 

the roots by sequestering metals [43]. Variations in plant 

species, plant growth stage, and element characteristics may 

all influence metallic pollutant absorption, accumulation, and 

translocation. 

The greatest progress in phytoremediation has been made 

with heavy metals [17, 128]. Soil-focused phytoremediation 

technologies are suitable for large areas which have been 

contaminated with low to moderate levels of contaminants. 

Phytoremediation will not be able to remediate extremely 

contaminated sites since the harsh conditions will prevent 

plant development and survival. The amount of soil that can 

be cleansed or stabilized is limited to the root zone of the 

plants. This depth might range from a few inches to many 

meters, depending on the plant [102]. 

Table 2. List of plant species utilized for phytoremediation of heavy metals. 

Heavy Metal Plant Species References 

Fe, Al, Cu, Mn, Cr, As, Zn, Hg Jatropha (Jatropha curcas L.) ** [55, 131] 

Cu, Fe, Mn, Zn, Ni, Cd, Pb, Co, As Lettuce (Lactuca sativa L.) ** [3, 86, 88] 

Pb, Cu, Zn, Fe, Cd, Ni, As, Cr Pea (Pisum sativum L.) ** [39, 49, 66, 103, 127] 

Cd, Cu, Fe, Ni, Pb, Zn, Cr Spinach (Spinacia oleracea L.) ** [1, 54, 80, 81, 95] 

As, Cd, Fe, Pb, Hg Cress (Lepidium sativum L.) ** [44, 111] 

As, Cd, Fe, Pb, Cu Radish (Rapanus sativus L.) ** [44, 47]  

Cd, Cu, Pb, Zn Salix spp. (S. viminalis, S. fragilis) * [94, 123] 

 Populus spp. (P. deltoides, P. nigra, P. trichocarpa)* [94] 

 Brassica juncea L.** [11, 103, 109, 118]  

 Canola (Brassica napus) ** [29, 107, 118]  

 Zea mays L.** [1, 117] 

Cd, Cu, Ni, Pb Jatropha (Jatropha curcas L.)* [2, 55] 

Cd, Pb, Cr, Cu Chickpea (Cicer aeritinum L.)** [28, 57, 126]  

Cd, Pb, Zn Zea mays* [74] 

As, Cd pigeon pea (Cajanus Cajan)** [39] 

Cu, Cd Rice (Oryza sativa L.)** [65] 

Pb Lantana (Lantana camara L.)** [6] 

 Lentil (Lens culinaris Medic.)** [125] 

Cd Castor (Ricinus communis)* [52] 

 Alfalfa (Medicago sativa L.)** [40] 

Hg Populus deltoides* [22] 

Se Brassica juncea, Astragalus bisulcatus* [15] 

Zn Populus canescens* [16] 

Source: Dixit et al. [31] *; Sumiahadi and Acar, [112] ** 

 

Plants have a range of potential mechanisms at cellular 

level that might be involved in the detoxification and 

tolerance to heavy metal stress. These are all involved in 

preventing toxic amounts from accumulating at sensitive 

sites in the cell, thereby preventing harmful effects [46]. 

When metals build up in tissues, they induce toxicity both 

directly and indirectly by destroying cell structure and 

replacing critical nutrients [113]. 

Heavy metal build-up can be avoided in a variety of ways 

[46, 75]. Metal accumulation can be avoided by restricting 

metal movement to roots with the help of mycorrhizal fungi. 

Huang et al. [52], for example, described a Zn exclusion 

strategy in arbuscular mycorrhizal fungi associated with Zea 

mays. According to Marques et al. [67], reducing the influx 

through the plasma membrane as well as binding to cell wall 

and root exudates could be viable avoidance methods for Zn 

retention in Solanum nigrum cell walls. Plants may also use 

other strategies to avoid metal build-up, such as stimulating 

metal efflux into the apoplast. Benaroya et al. [12] 

demonstrated that this stimulation happened and that the 

apoplastic accumulation of Pb in Azolla filiculoides was 

significant, as well as the chelation of different ligands in the 

cytosol. Metal detoxification abilities in plants are aided by 

ligands such as phytochelatins and metalotheins, as 

demonstrated by the engineered Nicotiana tabacum [75]. The 

transport and buildup of metals in the vacuole is one proposed 

avoidance tactic. Thlaspi goesingense, for example, improves 

Ni tolerance by transferring and compartmentalizing most of 

the internal leaf Ni into the vacuole [59]. 

2.2. Principles and Promises of Fundamental 

Phytoremediation Processes 

Generally, a number of phytoremediation strategies are 

possible with distinct mechanism of action for the 

remediation of metal-polluted soils [69, 122]. Phyto-

stabilization, in which plants are utilized to stabilize rather 
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than clean contaminated soil, is one of them. Phyto-

volatilization, in which plants extract certain metals from soil 

and then release them into the atmosphere [124]; phyto-

extraction, in which plants absorb metals from soil and 

translocate them to harvestable shoots, where they 

accumulate [61]; phyto-filtration, which includes rhizo-

filtration (use of plant roots), blasto-filtration (use of 

seedlings), and caulo-filtration (use of excised plant shoots) 

[76]. and phyto-degradation, which involves the breakdown 

or modification of metals within tissues by enzymes [7]. 

 
Figure 1. Various processes of heavy metals’ phytoremediation [31]. 

2.2.1. Phyto-stabilization of Heavy Metals 

Phyto-stabilization refers to grow plants on soils polluted 

by heavy metals [64] with principal purpose to stabilize the 

contaminants by limiting their mobility [5] and 

bioavailability [64] via the plant roots [4]. For effective 

stabilization, plants should be resistant to heavy metals [64]. 

It is predominantly applicable for remediation of heavy 

metals including Ar, Cr, Cd, Zn and Cu [62]. The research of 

Smith and Bradshaw [110], led to the development of two 

cultivars of Agrostis tenuis Sibth. and one Festuca rubra L. 

which are used for phyto-stabilization of Pb, Zn, and Cu. 

Phyto-stabilization can help in a variety of circumstances 

involving large areas of surface contamination [26]. Phyto-

stabilization is not a possibility in some highly contaminated 

locations since plant growth and survival are impossible [14]. 

Phyto-stabilization has several advantages over other soil-

remediation techniques, including cost, environmental 

impact, ease of implementation, and aesthetic appeal [14, 

101]. It also minimizes soil erosion and heavy metal 

migration to far-flung locations [90]. 

2.2.2. Phyto-extraction of Heavy Metals 

Phyto-extraction, the most commonly recognized of all 

phytoremediation technologies, is predominantly applicable 

for the clean-up of polluted soils [4]. It concerned with to 

the use of hyper-accumulator plants [70] that are adapted to 

uptake large quantities of heavy metals from soil through 

their roots [19] and subsequently, translocate them to the 

above ground portions [5] where they can be stored [31] in 

large concentrations. As a result, the plant biomass is 

increased [19] and then the above-ground portions are 

harvested and removed so as to assure permanent deletion 

of metals from the site [73]. However, in some cases, the 

disposal of contaminated material may become an issue. As 

a result, some studies propose burning of harvested plant 

tissue, which drastically minimizes the volume of waste 

that must be disposed of [61]. If important, valuable metals 

can be recovered from the metal-rich ash and serve as a 

source of revenue, thereby compensating the expense of 

cleanup [24, 25]. 

Phyto-extraction should be seen as a long-term 

remediation activity that will take many cropping cycles to 

achieve acceptable metal concentrations [61]. The amount of 

time required for remediation varies depending on the kind 

and extent of metal contamination, the length of the growing 

season, and the efficiency with which plants remove metal; 

however, it typically takes 1 to 20 years [17, 61]. Because 

plant growth is not sustained in extremely polluted soils, this 

approach is suited for the restoration of broad areas of land 

that are damaged at shallow depths with low to moderate 

amounts of metal pollutants [17, 61]. Metals in the soil 

should also be bioavailable, or able to be absorbed by plant 

roots. 

Pollutants that dissolve in water are easily extracted by 

plants [5]. In the usual range of soil pH, for example, Pb is 

very insoluble and unavailable for plant uptake. As a result, 

plants growing in extremely contaminated locations 

frequently has shoots with less than 50 mg Pb g-1 [26]. 

When grown in Pb-contaminated soil, even plants with the 

genetic capacity to accumulate Pb, such as B. juncea, will 

not have much Pb in their roots or shoots. The finding that 

certain soil-applied chelating chemicals dramatically 

accelerate the translocation of heavy metals, particularly 

Pb, from soil into shoots, provided the answer to the metal 

availability problem [18]. 
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For the process to be efficient, plant should be able to 

tolerate high metal concentrations [70] and be efficient at 

translocating them from roots to the harvestable above-

ground portions of the plant [17]. Furthermore, the plants are 

desirable to cope with difficult soil conditions (soil pH, 

salinity, soil structure, water content, etc) plus disease and 

insect problems. In fact, the success of phyto-extraction is 

inextricably linked to two key plant features. These abilities 

include the ability to rapidly create enormous amounts of 

biomass and the ability to accumulate high amounts of heavy 

metals in shoot tissues [18, 71]. Brassica juncea, while 

having one-third the Zn concentration in its tissue, is more 

successful in removing Zn from soil than Thlaspi 

caerulescens, a recognized hyper-accumulator of Zn, 

according to Ebbs et al. [34]. The fact that B. juncea 

produces ten times more biomass than T. caerulescens 

contributed to this advantage. 

Adsorption: Root surfaces with enormous surface areas 

and high-affinity chemical sensors evolved specifically to 

absorb elemental contaminants from soils [30] and many 

elemental contaminants attach to root surfaces during the 

adsorption process [48, 97]. For example, Indian mustard 

(Brassica juncia) can rapidly concentrate Cd
2+

, Ni
2+

, Pb
2+

, 

and Sr
2+

 into root tissues at 500 times the amounts seen in 

the liquid media in which it grows [97]. Sunflower roots 

concentrate uranium from water contaminated with low 

but highly dangerous levels of this oxyanion by a factor of 

30,000 [33]. Similarly, tobacco roots treated to low 

concentrations (1–5ppm) of ionic mercury (Hg[II]) in 

liquid medium reduced the medium's Hg[II] content 

roughly 100-fold in just a few hours [48]. Because root 

surfaces compete for nutrients with a variety of particulate 

soil components, these adsorption mechanisms in soils are 

orders of magnitude less efficient than in liquid medium 

[89]. 

Uptake and Translocation: The plant cell plasma 

membrane contains a variety of specialized proteins involved 

in ion uptake and transport. These include proton pumps 

(ATPases that use energy and generate electrochemical 

gradients), co- and anti-transporters (proteins that employ the 

electrochemical gradients formed by ATPases to induce 

active ion uptake), and channels are all examples of these 

(proteins that facilitate the transport of ions into the cell). The 

interplay of ionic species during the ingestion of various 

heavy metal pollutants is a fundamental issue. Because root 

biomass cannot be harvested, translocation into shoots is 

desirable after uptake by roots. Metal ions are transferred 

from roots to shoots in a variety of ways, but little is known 

about them [119]. 

Most organic chelators, in contrast to citrate, promote 

metal ion absorption and translocation in plants. Plants 

release phytosiderophores like mugenic and avenic acids in 

response to metal ion shortages [35, 58]. Metal chelators 

boost the bioavailability of metal nutrients that are otherwise 

strongly bound to the soil and aid in their transport into plant 

tissues. Synthetic chelators can also be utilized to facilitate 

metal uptake and translocation. When ethylene diamine tetra-

acetic acid (EDTA) is applied to lead-contaminated soils, for 

example, the absorption and transport of lead + EDTA-

chelate into stems and leaves increases 100-fold [51, 121]. In 

addition to citric acid's involvement in lowering aluminum 

uptake, plants whose secretion of specific organic acids is 

raised would likely show higher uptake and translocation of 

metal contaminants. 

 
Figure 2. Metal ion uptake and translocation in plants (Richard, 2000). 

2.2.3. Phyto-volatilization of Heavy Metals 

Phyto-volatilization involves the uptake of pollutants from 

soil into plant body [4], then transform them into low boiling 

[31], less harmful compounds [48], and consequently 

discharge them into air [31, 48] through leaves or/ and shoots 

[5] with the help of transpiration. Phyto-volatilization is the 

most contentious of all phytoremediation processes, as there 

is concern about the safety of releasing gaseous contaminants 

(As, Hg, and Se) into the atmosphere [128]. For instance, Hg 

is present in soil in combination with methyl group which 

makes it extremely toxic, but modified tobacco plants are 

capable to uptake and transform methyl mercury into less 

toxic molecular form and ultimately release it into the 

atmosphere [5]. 

Members of the Brassicaceae are capable of emitting up to 

40 g Se ha
-1

 day
-1

 as different gaseous chemicals, according 

to Terry et al. [116]. Cattail (Typha latifolia L.) is a nice 

example of an aquatic plant that can help in Se 

phytoremediation [83]. Unlike plants used for Se 

volatilization, those utilized for Hg volatilization are 

genetically engineered organisms. The bacterial 

organomecuriallyase (MerB) and mercuric reductase (MerA) 

genes have been inserted into Arabidopsis thaliana L. and 

tobacco (Nicotiana tabacum L.) [48, 93]. These plants take 

elemental mercury (II) and methyl mercury (MeHg) from the 
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soil and release volatile mercury (Hg(0)) into the atmosphere 

through their leaves [48]. 

 

Because the inorganic forms of these elements are 

eliminated and the gaseous species are unlikely to be re-

deposited at or near the site, the volatilization of Se and Hg is 

a permanent site solution [9, 48]. Furthermore, after the first 

planting, places that use this technology may not require 

much upkeep. This type of treatment has the added 

advantages of causing minimal site disturbance, reducing 

erosion, and eliminating the need to dispose of contaminated 

plant debris [48, 92]. According to Heaton et al. [48], adding 

Hg(0) to the atmosphere would have no substantial impact on 

the atmospheric pool. Those who favor this strategy, however, 

believe that it is not appropriate to use phyto-volatilization in 

population centers or in areas with peculiar meteorological 

circumstances that encourage the rapid deposition of volatile 

chemicals [48, 92]. 

2.2.4. Phyto-degradation of Heavy Metals 

In this technique, heavy metals are either broken down 

enzymatically or converted to less toxic forms with the aid of 

enzymes present in plant tissues [31]. The effectiveness of 

the process relies exclusively on the nature of soil, plant type 

and the quantity and type of pollutant to be treated [5]. After 

the uptake, heavy metals are subjected to various catalytical 

reactions within the plant living tissues. MerA and merB, two 

laboratory-made genes from the well-characterized bacterial 

mer operon, are employed in plants for mercury 

transformation and remediation [72]. As illustrated below, 

the bacterial merA gene produces a NADPH-dependent 

mercuric ion reductase that transforms ionic mercury (Hg[II]) 

to elemental mercury (Hg[0]): 

 

Methyl mercury (CH3
–
Hg

+
) is not only the most toxic 

natural form of mercury, but is biomagnified efficiently in the 

food chain. 

2.2.5. Rhizo-filtration of Heavy Metals 

Plant roots are utilized to either adsorb heavy metals on 

roots [64], accumulate them in the root zone [5], or convert 

them by bacteria in the root zone [5]. Surface water, 

extracted ground water, and less contaminated waste water 

are the most common applications [4]. Land plants with 

deep, hairy roots are ideal for this use [21]. This approach 

can be used to treat large amounts of Pb and Cr [5]. Although 

various plants such as sunflower, Indian mustard, tobacco, 

rye, spinach, and corn are capable of removing lead from soil 

and water but sunflower has been found to remove large 

amount of lead after one hour of exposure [21]. 

3. Conclusion 

Climate change, exacerbated by increased industrialization 

and urbanization, is causing the world to face plenty of 

problems and robbing it of its potential. Furthermore, toxic 

metal wastes produced by anthropogenic processes such as 

residential, municipal, agricultural, industrial, and military 

operations enter the soil, reducing its quality and utility. 

Because soil is the foundation of life, competent remediation 

is required. One of the current remediation options is the 

utilization of living organisms, notably plants (phyto-

remediation). Because, in compared to other soil remediation 

techniques, phyto-remediation is a cost-effective and low-

maintenance method that is suitable for large areas with low 

to moderate levels of contaminants and is environmentally 

friendly. Phytoremediation, on the other hand, is a long-term 

cleanup alternative with a variety of remediation processes. 

For example, air pollution may result from phyto-

volatilization, whereas pollutants gathered in leaves may be 

released back into the ecosystem after litter fall in the case of 

phyto-extraction. 

Furthermore, contaminants must be accessible to the plant 

and its root systems, despite the fact that plant life and 

function are influenced by a variety of edaphic and plant 

circumstances. As a result, future concerns should focus on 

modifying and improving phyto-remediation technologies 

that are likely to improve metal binding abilities in plant 

tissues and phyto-transform hazardous metals. Finally, in 

addition to improving and adapting diverse approaches, it is 

vital to prevent or avoid the discharge of dangerous 

substances into the environment. 
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